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ABSTRACT 

The Educational Data Mining (EDM) community has experienced 

many benefits from the open sharing of data.  Efforts such as the 

Pittsburgh Science of Learning Center Datashop have helped in 

the development of learning data storage and standards in the 

educational community.  In other fields, standards of comparison 

have been created through publication, sharing, and competition 

on identical datasets.  This ability to share, compare, and grow as 

a field has proven to be a success point for the community of 

scientists.  This paper presents a new and unique dataset intended 

for sharing with the educational data mining community which is 

unique in its features, measures affective and cognitive elements 

into learning experiences, and presents a challenge for EDM 

researchers.  Initial offline analysis results and secondary online 

analysis results are presented as benchmarks for comparison by 

future researchers. 
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1. INTRODUCTION 
The most influential example of data sharing in the educational 

data mining field is doubtless the Pittsburgh Science of Learning 

Center Datashop [26].  The PSLC DataShop presents fine-

grained, extensive, and longitudinal data on student learning, 

including demographic information on students.  At the time of 

writing, the PLSC DataShop has been cited within over 100 

pieces of academic writing, where numerous researchers have 

benefited.  This process of data sharing is pushed academically 

both from the National Science Foundation [4], and from the 

Army Research Laboratory (ARL) through the National Academy 

of Sciences [1]. 

The United States Army Research Laboratory (ARL) has a 

mission of “Technology Driven.  Warfighter focused”, and 

occupies an unusual space in the world of scientific progress.  

Most academic research institutions have an emphasis on 

discovery, invention, innovation, and collaborative sharing.  Most 

commercial institutions have an emphasis on providing market-

driven solutions to customer problems.  Between these two areas 

lies the problem of transition, where innovations and inventions 

find application within an area of customer use [17].  ARL has a 

primary interest in creating original research in areas of defense 

interest, and attempting to accelerate the both the pace of 

discovery through collaboration with research institutions, and the 

rate of technology adoption, through collaboration with a user 

community composed of both industrial and military technology 

adopters. Efforts to focus research effort upon user-relevant 

problems occupy the space between research and 

commercialization, and consequently offer an attractive manner to 

speed both. The open sharing of research data presents such an 

option, both through aiding academic researchers and through the 

transition of the subsequently developed research solutions into a 

field of use. 

The author of this paper intends to share a unique dataset as part 

of the submission of this paper, discuss the reasons for its 

collection, as well as the experiment which produced it.  

Additionally, the author presents some initial analysis showing 

methods for classification of this data can be developed, and some 

of the experiments in producing rapid classifiers which indicate a 

need for feature extraction.  Each of these experiments can benefit 

from additional research experimentation, as well as a 

commercialization testbed.  These initial analyses provide 

baselines benchmarks for comparison by future researchers. 

Finally, there is some discussion of additional datasets which may 

be able to be shared in the near future. 

2. DATA SHARING  
The sharing of data allows researchers to compare research 

results, be assured that they are working on a similar problem, and 

presents an avenue for collaboration.  Open competition and 

cooperation among data mining scientists has resulted in 

numerous improvements to overall solution quality [12].  

Oftentimes these solutions are the result of incremental progress 

among a community, or are spurred on as a result of the 

competitive nature of research or commercialization.  Data 

sharing may have one or more of the following primary goals: 

 To develop standards, as part of sequential data processing 

techniques 

 To improve the overall state of practice, as part of 

benchmarking 

 To give share in the efforts of other researchers, including 

the data collection, cleanup, feature extraction, classification 

algorithms, and other items. 

However, efforts in data sharing additionally benefit from having 

some idea of the original project and motivations.  Knowledge of 

the initial motivation and initial data analysis helps to explain the 

purpose of what is being looked for, as well as provide a starting 

place when pursuing individual research interests.  An initial 

description of the study which produced the data, with 

information on locations for where to get further and in-depth 

descriptions, significantly aids the community ability to mine the 

data for knowledge.  This has become the standard of practice in 

many data mining communities [12; 26]. 

3. INITIAL MOTIVATION 
The ARL Learning in Intelligent Tutoring Environments (LITE) 

Lab has an interest in Intelligent Tutoring Systems (ITS) research, 

and has developed the Generalized Intelligent Framework for 

Tutoring (GIFT) [32] as an architectural output for research.  

GIFT is composed of several interoperable modules for the 

communication of sensor, learner, instructional, and performance 
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information.  As a part of ongoing GIFT research, there are 

various projects examining the state of the art for each of these 

areas.  Among the goals of the GIFT project is to be able to 

rapidly transition performed research into the open-source 

community.  Transition tools, authoring tools, and multiple 

programming language plugins have been constructed for this 

purpose, are curated to ensure overall stability and use, and are 

freely and publicly distributed [3]. 

The Sensor Module component of GIFT is tasked with the 

measurement and communication of sensor information to the 

remaining components of the architecture.  The remaining 

components of the architecture, in turn, transform this sensor 

information into pedagogical strategies designed to influence 

learning gains [18].  In an ideal world, these functions would be 

performed with perfect accuracy, no cost, and in an unobtrusive 

fashion.  Currently, however, sensors have a tendency to be 

intrusive, high cost, and only somewhat reliable.  The 

measurement of affective and cognitive states for educational 

purposes is of interest to the community, and steps to do so 

cheaply with little human interaction are desirable. 

These affective phenomenon (e.g. Anger, Boredom, Anxiety, etc.) 

have been shown to have impact over learning outcomes [31], 

which make it desirable to measure them as part of the interaction 

with an educational system [33].  As an example, high arousal 

relates to increased attention to the arousing item [25], boredom 

leads to lower retention and information application [31], and 

frustration can distract from learning activities [30].  

Classification of these states is of interest to the GIFT 

architecture, as it is able to recommend variation in pedagogical 

intervention based upon their availability.  

Cognitive phenomenon (e.g. attention, working memory, 

executive function, etc.) may also be of interest to the creators of 

learning systems.  As an example, divided attention leads to lower 

learning performance [31], low engagement may indicate non-

participation within a learning environment [16], and high 

workloads show a decrease in  both performance and retention 

[20].  A system which is able to measure, predict, or model the 

emergence of both cognitive and affective phenomenon may be 

able to increase learning outcomes, which is a significant part of 

the goal of the educational data mining community and LITE Lab 

alike. 

Currently, the measurement of these states is dependent upon the 

means of detecting them.  These states are detected via bodily 

sensors or via self-reporting data.  The set up of bodily sensors, or 

the query of self-report information takes time away from learning 

activities, can be uncomfortable, can disengage from the learning 

environment, and can be expensive to purchase.  It is desirable to 

be able to detect these states with little interference, and at little 

cost.  The initial motivation for the collection of the subject 

dataset was to reduce the cost of sensor-based methods of learning 

state detection, as has been published as part of this goal [13; 27].  

The sensors used during this experiment were extremely low cost, 

with less than $300 spent on the total sensor suite, when 

excluding the sensors used to produce labeling information for 

participants.  If algorithmic classification for these low cost 

sensors is able to mimic (albeit with lessened accuracy) the 

performance of the high cost sensors, then it creates the ability for 

tradeoffs between cost and resolution for the creator of intelligent 

tutoring systems. 

4. EXPERIMENT 
Participants were taken from a pool of General Psychology 

Students at the United States Military Academy (USMA) at 

Westpoint.  Participants took place in two parts of a study in order 

to induce various affective and cognitive states.  During the first 

phase, participants were asked to undertake a visual vigilance 

task, watch video clips from the movie Halloween, and the movie 

My Bodyguard. The video segment from Halloween has been 

previously validated to induce Fear and Anxiety, while the video 

segment from My Bodyguard has previously been validated to 

induce Anger and Frustration [22]. 

During the second phase of the study, participants were asked to 

take place in several scenarios within the Army’s Virtual 

Battlespace 2 (VBS2) video game.  VBS2 is used for training a 

variety of Army-relevant tasks.  Four VBS2 scenarios which had 

previously been validated to produce various cognitive and 

affected states were played [24].  The primary affective or 

cognitive inducing event experienced, in each scenario, was: 

1. Limited visual perceptions within a tactical and dangerous 

scenario environment 

2. An unrealistically large number of enemies 

3. Annoying sounds 

4. Equipment malfunction 

The cognitive and affective states, and the tasks which induced 

them, are presented in Table 1.  The author maintains that the 

purpose of this paper is to share the data and analyses, rather than 

to present the total research study.  The study is described in 

greater depth in other publications [8; 13; 27]. 

Table 1. Summary of induced affective and cognitive states 

Affective State 

 Boredom Anxiety / Fear Anger / Frustration 

Task Visual 

vigilance 

  

Movie 

Clip 

 Halloween My Bodyguard 

VBS2 

Scenario 

 34 1234 

Cognitive State 

 Workload Engagement Distraction  

VBS2 

Scenario 

1234 1234 1234 

 

4.1 Hardware 
Figure 1 shows a fully instrumented participant.  In total, 

measurements were collected via two Electroencephalography 

(EEG) systems (from Neurosky and Advanced Brain Monitoring 

(ABM)), a custom-made eye tracker, a Zephyr heart rate monitor, 

embedded Phidget pressure sensors within the chair, a Venier 

sonar sensor for distance from the computer, and emotional self-

report measure.  The self-report measure of EmoPro and the ABM 

headset have previously been validated to produce accurate 

measures of affective and cognitive states, respectively [14; 23].  

A summary of the measures which these sensors produce is 

included in Table 2.  Larger discussion on the relevance of each of 

these states to learning outcomes and validation of the baseline 

measurements is available in prior work [8; 13; 27]. 



 

Figure 1. Fully Instrumented Participant 

 

Table 2. Summary of sensors used and states measured. 

Sensor Affective State Cognitive State 

ABM EEG*   
  

Attention, 

Engagement, 

Distraction, 

Drowsiness, Workload 
Neurosky EEG 

Eye-tracker   Attention, Drowsiness, 

Workload 

EmoPro* Anger, Anxiety, 

Arousal, 

Boredom, Fear, 

Stress 

Attention 

Heart Rate 

Monitor 

Chair Pressure 

Sensor (posture) 

Arousal, 

Boredom, 

Frustration 

 

Engagement, Flow 

Motion Detector 

(posture) 

* Indicates Ground Truth Measurement 

5. INITIAL ANALYSIS 
The Logistic Model Tree (LMT) method of analysis [28] was 

selected for classifier construction on this data from among a 

series of methods considered [27].  Ten-fold cross validation was 

used in an effort to avoid overfitting.  The created trees were 

found to have a single node, rendering this method similar to 

logistic regression.  The measure of Area Under the Curve (AUC) 

of the Receiver Operator Characteristic (ROC) [21] is used to 

evaluate overall model quality.  In general, the AUC ROC method 

produces a value in the range [0,1], with 1.0 representing perfect 

classification accuracy and 0.5 representing baseline levels.  The 

overall finding is that there is significant room for improvement of 

generalized model quality, but that data trends are available to do 

so.  These findings are summarized with Table 3 and Table 4. 

 

 

 

Table 3. Summary of which sensor data was used to create 

Initial Emotional Models 

Low-Cost 

Sensor 

EmoPro Measurements 

Anger Anxiety/Fear Boredom 

HR   X 

Eye Track    

EEG  X X 

Chair  X  

Distance  X X 

AUC ROC N/A 0.83 0.79 

 

Table 4. Summary of which sensor data was used to create 

Initial Cognitive Models 

Low-Cost 

Sensor 

ABM Measurements 

Engagement Distraction Workload 

HR X X  

Eye Track    

EEG    

Chair X X X 

Distance X  X 

AUC ROC 0.80 0.81 0.82 

6. REPURPOSED ANALYSIS 
Later projects were investigating a realtime signal approach to 

data processing for the classification of emotional states in 

realtime [10].  The core idea of this approach is that highly 

adaptable and individualized approaches to modeling would be 

better able to model emerging states. There is some evidence that 

adaptable approaches among cognitive state data are able to 

model more accurately, but there remain few attempts to model 

states in this way [2].  Additionally, there is evidence that models 

created from bodily sensor data may fail generalization tests for 

reasons such as electrode drift, changes in default impedance, and 

other non-linear behavioral factors [2]. 

In order to perform this type of modeling, there needs to be a 

dataset with a number of desirable features.  It needs to include 

states of relevant interest to learning, and the ability to transfer 

these states to other systems (sensor-based data streams).  It must 

be created on a relevant population (learners), with items which 

can be potentially included within classrooms.  Finally, work for 

this purpose must contain high resolution labeling information, 

and contain previously established models for the purpose of 

comparison.  Having all of these features present in a single 

dataset is rare, but present in the dataset described by this paper.  

This checklist is presented in Table 5, as a checklist, in an effort 

to recommend similar types of data collection for other 

experimental designers. 

 

 

 

 

 

 



Table 5. Checklist of features for Low Cost Sensor dataset 

(recommended for other studies) 

Does the dataset have… ? 

Relevant states to learning  

Ability to be transferred, without modification, to 

another domain of instruction 

 

Relevant population  

Relevant cost for classroom inclusion  

Labeled data  

Initial benchmarks for research comparison  

 

6.1 Secondary Analysis 
The author sought a dataset with relevant features (Table 5) for 

future work in testing various schemes of classification, for 

simultaneous model creation and use within a training 

environment.  While simultaneous model creation and use allows 

for a highly individualized approach, it requires special treatment 

of the datastream.  In brief, any appropriate method must treat the 

stream as though it has infinite length, be able to discover 

emergent concepts, keep track of these concepts as they are 

redefined, and separate them from other distinct areas.  These 

fundamental problems are discussed at length in order work, but 

importantly preclude the application of traditional methods such 

as reinforcement learning, Bayesian, or genetic approaches, 

primarily because of the infinite length problem [5; 8]. 

The approaches of Adaptive Resonance Theory (ART) [11], 

Online Semi-Supervised Growing Neural Gas (GNG) [6], Vowpal 

Wabbit (VW) [29], and incremental clustering [9] were selected 

to create, use, and evaluate a model simultaneously [8].  Each of 

these methods creates a class, cluster, or other area of labeled 

information around an area of the sampling space in various 

manners.  As an example, clustering creates new classes based on 

a parameter-specified distance away from an existing cluster 

centroid and classifies a point to cluster membership based on the 

nearest cluster centroid while ART creates new classes and 

classifies classes based upon representative vectors. 

Each of the four methods mentioned above was modified to create 

a semi-supervised learning approach which required a 

significantly lower number of labeled data points in order to make 

classification decisions.  This type of approach allows for limited 

labeling information to exploit cluster/class/group structure and 

search efficiently through a set of hypothesis derived among 

mostly-unlabeled information [15].  This was further engineered 

to take an active learning approach, where each algorithm was 

enabled to select the points which appeared most helpful towards 

aiding these classification decisions.  This type of approach 

presupposes the presence of an ‘oracle’ which is capable of 

granting label requests infrequently, which is a reasonable 

assumption when the student is available for questioning. 

The total of these efforts is the development of realtime 

algorithmic approaches which are able to classify with very little 

labeling information.  These approaches can be compared side-by-

side to the binary classification, regression-based, logistic model 

trees created in the earlier study.  Using methods for 

individualized realtime model construction on multiple 

individuals provides evidence to how well the model is likely to 

transfer to a new population, while having a comparison 

benchmark assures that it is possible to create a model at all.  

While the offline models used in the initial analysis are created 

with “infinite” time and 100% of the data, the offline models have 

limited time and data availability.  

A variety of measures and feature elimination were used in the 

analysis, but it appears that something more rich needs to be 

performed in order to achieve parity performance with the offline 

models [8].  The measures included were “how well does this 

algorithm model the previous 10% of the total datastream?”, “how 

well does this algorithm predict the next 10% of the total 

datastream?”, and “how well does this algorithm model all of the 

data seen thus far?”  An example chart of performance shows 

average model quality over the previous 100%, previous 10%, and 

next 10% averaged over all participants is shown in Figure 2 for 

the GNG algorithm.  Figure 2 shows the easiest, supervised, 

setting using the GNG method, while Figure 3 shows performance 

of the ART method the most demanding, unsupervised, setting.  

Semi-supervised and active learning settings were found to have 

the expected performance in between the two differing levels of 

supervision. However, no method was able to construct quality 

cognitive models using the identical data used by the offline linear 

regression models. 

The fundamental question that this research sought to answer, 

with regard to cognitive models, was “Can a quality model of 

cognition be constructed on an individualized and realtime basis, 

with various state-of-the-art methods, while using only the data 

which is used for the offline regression models?”.  The answer, 

unfortunately, is that they cannot be constructed out of the raw 

data, due to the rapidly changing nature of cognitive states.  

Researchers who are not interested in confining themselves to a 

limited subset of datastreams, and have the freedom to feature 

engineer and reprocess as interested may well be able to create 

more usable cognitive models. 

While the cognitive modeling conclusions are disappointing, the 

affective components of this secondary analysis show promise.  In 

short, affective states are slow-changing enough that rapid model 

development shows promise for correlation with other observed 

data to represent finite and discriminable states.  This work has 

been performed [9], but deserves more than the glancing 

discussion of algorithms, adaption, semi-supervised learning, and 

active learning which is presented within this data sharing paper.  

The affective work is currently under review for journal 

publication. 

 



 

Figure 2. Subset of performance of cognitive models, using 

various metrics of viability.  Subset shown is for supervised 

classification, using GNG method.  Baseline measurements of 

0.6 or greater are not achieved. 

 

Figure 3. Subset of performance of cognitive models, using 

various metrics of viability.  Subset shown is for unsupervised 

classification, using ART method.  Baseline measurements of 

0.6 or greater are not achieved. 

7. CONCLUSION 
The dataset in this paper has been collected at expense to the 

Army, but is useful to a wider public.  An initial project analyzed 

this dataset in order to determine if low cost sensors are able to 

mimic the performance of high cost sensors when supplemented 

with classification improvements.  The finding was that they were 

able to, but that more work was needed in order to mimic the 

performance of the high cost sensors in a generalized fashion with 

the data available. 

A secondary look at this dataset investigated a different research 

question.  This study sought to examine whether highly 

individualized (not generalized) cognitive models could be 

created with the same data available to previous classifiers.  The 

answer to this question was that it could not be done with the raw 

cognitive data alone, and that further work would need to be done 

to develop filters, feature extraction, and other, differing, methods 

of processing.  

The findings of both of these studies indicate that there is 

significant work left to be performed on this dataset.  This 

includes the development of feature extraction techniques for 

more advanced model development, the development of 

additional types of classification, the development of online and 

realtime classifiers, and other items.  This data could, of course, 

be used in new and unexpected ways by other researchers for 

purposes like cognitive and affective state correlation or 

developing data fusion approaches.  

The sharing of this data with the community gives a unique 

opportunity for educational, or other, data mining researchers to 

analyze a set of data without the trouble of collection.  This data is 

shown to be relevant to learning, collected with low cost sensors, 

within real world (noisy) conditions.  A researcher who analyzes 

this data has the opportunity to expand directly on work 

performed across several communities of interest.  These 

communities include the educational data mining, physiological 

sensor, EEG, military application, and Intelligent Tutoring System 

(ITS) areas of research, where portions of this research have 

before been published. 

8. FUTURE WORK 
The author encourages others to open datasets for joint sharing 

and analysis in an effort to close the loop between educational 

data research and an area of practice.  An effort led by Art 

Graesser at this year’s Educational Data Mining conference is 

focused on the joint benefits to community development while 

increasing the overall rate of experimentation and technology 

transition. 

In addition to sharing the Low Cost Sensor Dataset, there are 

several other datasets which have been collected and face the 

possibility for sharing after internal hurdles are cleared.  These 

include sets of GSR and ECG data [7], low-cost EEG data [19], 

and a currently unpublished study using the Microsoft Kinect®.  

As a part of the scientific community, it is the intention of the 

author, on behalf of ARL, to open up future datasets for re-

analysis, future work and other forms of collaboration. 
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